

Rechargeable Batteries for Electrochemical Energy Storage: From Battery Research to Application

Workshop: Batteries – Fuelling the Alliance with the Future Santiago de Compostela, Nov. 6th, 2018

Dr. Tobias Placke, Prof. Dr. Martin Winter

MEET Battery Research Center, University of Münster, Münster, Germany

E-Mail: tobias.placke@uni-muenster.de

Münster Electrochemical Energy Technology

Official Launch in 2009 – Entry into MEET-Arcades in 2011

Central Scientific Institution of University of Münster since 2013

Diversity and Internationality

About 140 staff members from more than 12 nations, 30% female

Worldwide Visibility

with numerous scientific publications, conference contributions, patents, awards, *etc*.

Bridge

from Science to Industry

The Battery Value Chain

Materials

Components

Cells

meet

Batteries

Application

Recycling

Electrochemistry & process development

Focus of MEET

Management system & System integration

Technical Universities

Electrochemistry & process development

Focus of MEET

6. November 2018

3

MEET Battery Research Center: Division "Materials"

BOARD OF DIRECTORS Scientific Leadership: Prof. Dr. Martin Winter // Management: Dr. Falko Schappacher

Head of Division "Materials": **Dr. Tobias Placke**

Deputy Head: Dr. Richard Schmuch

Group size (2018):

- 5 Post Docs
- 15 PhD students
- > 15 Undergraduate Students (Master, Bachelor or internship students)

November 6, 2018

Excellent Times for Electrochemical Energy Storage (= Batteries and More)

- Global market for lithium ion batteries (LIBs) in xEVs (HEVs, PHEVs, BEVs, etc.) and energy storage applications is huge.
- > xEV market based on LIB technology has recently become the largest.

November 6, 2018

The Lithium Ion Battery (LIB): A Success Story

From Today's View: Is it possible to develop a "1000 km battery"?

Yes, but...

Battery Performance Targets: Energy Density and more

- Current energy density: ≈260 Wh/kg & ≈700 Wh/L in cylindrical 18650-type cells
- Further energy-optimization becomes increasingly difficult

MÜNSTER (2)

Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. *Journal of Solid State Electrochemistry* **2017**, *21*, 1939.
 Janek, J.; Zeier, W. G. *Nature Energy* **2016**, *1*, 16141.
 Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. *J. Mater. Chem. A* **2015**, *3*, 6709.

*: pack level

Battery Performance Targets: Energy Density and more

The Battery Value Chain: From Material Level to Pack Level

November 6, 2018

MÜNSTER

(1) Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. *Nature Energy* 2018, *3*, 267.
(2) Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. *J. Mater. Chem. A* 2015, *3*, 6709.

11

Battery Process Chain

MÜNSTER

290-300.

The Battery Value Chain: From Material Level to Pack Level

Cost Structure of Lithium Ion Batteries: Raw Material Impact

- Raw material cost account for ≈50-70 % of LIB cells
- Cathode materials are the most substantial contributor to material cost

Materials for Lithium Ion Batteries: meet **State-Of-The-Art and Development Strategies** (1)Cathode Materials (Lithium/Lithium-Ion) Copper 8 um 5 $x \operatorname{Li}_{2}\operatorname{MnO}_{3}/(1-x)\operatorname{Li}MO_{2}$ (*M*= Mn, Ni, Co) Porous composite $LiNi_{0.5}Mn_{1.5}O_2$ (LNMO) 65 µm insertion "5V" LiCoPO₄ (LCP) electrode Potential vs. Li/Li⁺ / V LiMnPO₄ Li₂FeSiO₄, Organic Cathodes Liquid electrolyte Porous separator $20 \, \mu m$ "4V" LiCoO₂, Li[Ni_xCo_vMn_z]O₂ (NMC), $Li[Ni_{0.8}Co_{0.15}AI_{0.05}]O_2$ (NCA) 3 "3V" $LiMn_2O_4(LMO)$ Porous composite insertion 65 μm electrode Insertion electrode LiFePO₄ (LFP) reaction principle Anode Materials (Lithium/Lithium-Ion) 2 Metal Oxides Aluminum 12 um $Li_4Ti_5O_{12}$ (LTO) (Conversion Materials) Carbons Lithium-Graphite Tin Sn-C Silicon **Si-C composites** metal (Sn) (Si) **Composites** 0 3750 250 3500 0 500 750 1000 1250 1500 1750

Spec. Capacity / Ah kg⁻¹

MÜNSTER

November 6, 2018

State-of-the-Art LIB Anode Materials: Graphitic Carbons

- Carbonaceous materials: Synthetic graphite (SG; share of 54%) and natural graphite (NG; share of 39%) as well as amorphous carbons (share of 2%)⁽¹⁾
- Often, mixtures of amorphous and graphitic carbons are used to optimize the P/E-ratio
- Demand for graphite increases fast, especially for synthetic graphite due to EV market
- SG shows outstandingly high levels of purity and less fluctuating quality compared to NG → SG meets EV lifetime requirements
- Cost: \approx 7 \$/kg for NG and \approx 13 \$/kg for SG (2017)
- Currently, only some commercial cells (*e.g.* Panasonic) use silicon (SiO_x) in small amounts (few wt.%)

Industrial Production of Carbons: Synthetic Graphite vs. Natural Graphite

Graphite ore Petroleum coke, coal tar pitch 1) Mining and Flotation 1) Pre-treatment Calcination: "Soft Carbon" > Mining from graphite ore > Crushing, grinding Mechanical separation Flotation, drying, screening Classifying 2) Graphitization 2) Material processing ≻ T ≥ 2800 °C Micronisation > Spheroidization Purification (chem./therm.) 3) Particle Refinement 3) Particle Refinement > Conditioning, grinding > Conditioning, grinding Classifying, carbon coating Classifying, carbon coating Graphite Carbon Synthetic graphite **Natural graphite** November 6, 2018

MÜNSTER

Major Challenges:

- High energy consumption and high cost, i.e.
 >25% of total production cost (*synthetic graphite*)
- Natural graphite is classified as "critical" material (largest deposits: China)
- Purification of *natural graphite* is often done by acid treatment (HF) → water pollution
- China: insufficient monitoring and measures: high levels of environmental and air pollution ⁽²⁾

(1) Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M., *Nature Energy* 2018, 3, (4), 267.
(2) The Washington Post: In your phone, in their air. [https://www.washingtonpost.com]

Industrial Production of Carbons: Synthetic Graphite vs. Natural Graphite

Graphite ore Petroleum coke, coal tar pitch 1) Mining and Flotation 1) Pre-treatment Calcination: "Soft Carbon" > Mining from graphite ore > Crushing, grinding Mechanical separation Flotation, drying, screening Classifying 2) Graphitization 2) Material processing ≻ T ≥ 2800 °C Micronisation > Spheroidization 1 Purification (chem./therm.) 3) Particle Refinement 3) Particle Refinement > Conditioning, grinding > Conditioning, grinding Classifying, carbon coating Classifying, carbon coating Graphite Carbon Natural graphite Synthetic graphite November 6, 2018

Strategies:

- Decrease of processing cost by decrease of energy consumption during graphitization: Catalytic graphitization
- Search for alternative, abundant precursor materials for synthetic graphite production (e.g. from biomass or waste products)
- Search for environmentally friendly (or friendlier) processes for natural graphite purification
- Recycling of graphite anode materials from spent lithium ion cells

Graphite Recycling from Spent Lithium Ion Cells

Graphite Recycling from Spent Lithium Ion Cells

Open questions / challenges:

- Impact of electrolyte/salt residues on long-term performance (stability and rate)?
- Impact on solid electrolyte interphase (SEI) formation and stability?
- Multiple recycling of graphite possible? Degradation effects?

21

Challenges and Strategies for Si-Based Anodes

- High volume changes during lithiation/de-lithiation
- Pulverization/"cracking" of Si particles
- Contact loss of particles from electronically conductive network or current collector
- Instability of solid electrolyte interphase (SEI): Breakage and re-formation
- High active lithium losses by continuous electrolyte decomposition (low Coulombic efficiency)

Strategies

- Active/inactive matrix concept (nano-Si in inactive matrix)
 - Si/Carbon composite materials
 - Si/intermetallics/carbon composite materials

State-of-the-Art LIB Cathode Materials

LCO is mostly used for handheld consumer electronics (pouch cell lithium ion cells for mobile phones, tablets, *etc*.)

NCM is used in other electronic devices and in large cells (EV applications)

NCA is primarily used in 18650 cells (Panasonic, Tesla) and as blend with LMO for EV cells

►LMO is typically blended with NCM for EVs to adjust the P/E ratio: Trend: LMO/NCM 75:25 → LMO/NCM 25:75

LFP is primarily used for EVs and electric buses in China, as well as for industrial or stationary applications

State-of-the-Art LIB Cathode Materials: NCM-based Layered Oxides

MÜNSTER

November 6, 2018

NCM111 (Gen2a)	NCM523 (Gen2b)	NCM622 (Gen2b-3a)	✓ NCM811 (Gen3a)	NCM910 (Gen3a/b)		
Increasing nickel content						
		Increasing ca	apacity			
Ni: 33% Co: 33% Mn: 33%	Ni: 50% Co: 20% Mn: 30%	Ni: 60% Co: 20% Mn: 20%	Ni: 80% Co: 10% Mn: 10%	Ni: 90% Co: 10% Mn: 0%		

meel

NCM523 and NCM622 (and NCA) can be considered as state-of-the-art materials for xEV applications

- NCM811: short-term goal for EV applications
- Higher Ni-content
 - Lower cost of raw materials
 - > Challenges: Safety, lifetime and manufacturing

State-of-the-Art LIB Cathode Materials: NCM-based Layered Oxides

Cost drivers:

November 6, 2018

- Lithium is not considered as potential cost driver⁽²⁾
- Cost increase risk: especially Cobalt and Nickel pricing

MÜNSTER

		(Meers				
NCM111 (Gen2a)	NCM523 (Gen2b)	NCM622 (Gen2b-3a)	↓ NCM811 (Gen3a)	NCM910 (Gen3a/b)			
Increasing nickel content							
		Increasing ca	apacity				
Ni: 33% Co: 33% Mn: 33%	Ni: 50% Co: 20% Mn: 30%	Ni: 60% Co: 20% Mn: 20%	Ni: 80% Co: 10% Mn: 10%	Ni: 90% Co: 10% Mn: 0%			

- NCM523 and NCM622 (and NCA) can be considered as state-of-the-art materials for xEV applications
- >NCM811: short-term goal for EV applications
- Higher Ni-content
 - > Lower cost of raw materials
 - > Challenges: Safety, lifetime and manufacturing

Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K. *Journal of Power Sources* 2013, 233, 121.
 Ciez RE, Whitacre JF. *Journal of Power Sources* 2016, 320: 310-313.
 Data from: Pillot, C., Avicenne Energy, *Talk at Advanced Battery Power, Münster* 2018.

Promises of High-Capacity/High-Voltage Cathode Materials

MÜNSTER

>Volumetric energy density

November 6, 2018

Promises of High-Capacity/High-Voltage Cathode Materials 4500

MÜNSTER

November 6, 2018

(1) Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Journal of Solid State Electrochemistry 2017, 21, 1939.

State-of-the-art Electrolyte: Mixtures of Carbonates and LiPF₆

Current research focusses on novel additives for interface stabilization:

- Anode: Solid electrolyte interphase ("SEI")
- Cathode: Cathode electrolyte interphase ("CEI")
- High voltage (>4.5 V) electrolyte additives and solvents

Technological Roadmap of Battery Cell Chemistries

Generation 5	Li/O ₂ (lithium-air)	Technology		New cell chemistry:	
Generation 4	All-solid-state with Li metal anode; Conversion materials (Li/S)		(R ²)	Li metal [']	Revolution
Generation 3b	Cathode: HE-NCM, HVS Anode: Silicon/carbon	Evolutionary development		Advanced lithium ion cells	Evolution
Generation 3a	Cathode: NMC622 to NMC811 Anode: Carbon + Si (5-10%)				Today
Generation 2b	Cathode: NCM523 to NCM622 Anode: 100% Carbon			Lithium	louay
Generation 2a	Cathode: NCM111 Anode: 100% Carbon			ion cells	
Generation 1	Cathode: LFP, NCA Anode: 100% Carbon				
		2015 2020	2025 2030 First applicat	tion date in EV	

2) Risk of earlier market entrance

Research & Development of Battery Technologies: Past, Present and Future

The demand as well as the economic and social importance of rechargeable batteries increases rapidly (electronics, electro mobility, home storage, etc.)

Versatile requirements: Significant diversification of battery technologies in the past >25 years

Research & Development of Battery Technologies: Past, Present and Future

The demand as well as the economic and social importance of rechargeable batteries increases rapidly (electronics, electro mobility, home storage, etc.)

Versatile requirements: Significant diversification of battery technologies in the past >25 years

Lithium ion batteries (LIBs): Global market in xEVs (HEVs, PHEVs, BEVs, etc.) and energy storage applications is huge and will be the largest in the near future

> LIBs approach their physicochemical limit in terms of energy: Next generation? Alternatives? New Cell Chemistries?

Performance Targets: Energy Density

- Different battery technologies will be available at the market in parallel
- Application-specific usage of different battery systems (*e.g.* high energy *vs.* high power)
- Evolutionary development of each specific battery technology
- Classification of battery technologies:
 - Lithium ion systems
 - Lithium metal systems (ASSB, Li/S, Li/O₂)
 - Other/alternative battery systems (Na, Mg, Ca, Al, Dual-ion, *etc.*)

Lithium Metal Anodes: Enabled by Solid Electrolytes?

Solid Electrolytes: A Reality Check

Expectations

- Higher safety
- No cross-contamination of transition metals in electrode compartments (cross-talk)
- No dendrite formation, use of Li metal
- Higher voltages (higher energy density)
- Wide range of operation temperatures
- Long-term stability (cycle life, calendar life)
- Less expensive materials for inactive materials (current collection)
- Simplified thermal management

Taken from: (1) Dr. Frank Tietz, IEK-1, FZ Jülich, Batterieforum Deutschland, Berlin, 2018.

Unsolved Problems

- Slow kinetics in electrodes
- Ionic conductivity in electrodes
- Volume changes in electrodes
- "Dendrite" formation
- Interfacial resistances
- Interfacial delaminations
- Enhanced deterioration during cycling
- Higher cost
- Battery design

Estimated Electrode Stack Energy Density

Conclusion

- Roadmaps have identified the **dominant technology** for the next decade(s): The **lithium ion technology** (with or without solid electrolyte).
- There will be no universal LIB technology for all application purposes, but rather a variety of chemistries and configurations for specialized applications.
- > The highest potential to improve key performance indicators (energy, cost, *etc.*) of LIBs is on the **material level**.
- Most promising strategies for energy density improvements of LIBs are the implementation of higher Si-contents in high-energy anodes as well as to increase the Ni-content of layered cathode materials.
- Li-metal based chemistries, in particular all-solid-state-batteries can further enhance the energy content. However, it will be challenging to be cost competitive to further improved LIBs.
- Novel sustainable technologies "beyond lithium" have been explored, such as batteries based on monovalent (Na⁺, K⁺) and multivalent (Mg²⁺, Ca²⁺, Al³⁺) ions. However, it will be challenging to compete with advanced LIBs in terms of energy content and/or cost per energy.
- Foreseen 10% yearly increase in the number of batteries produced will inevitably need recycling to recover metals/materials whose abundance is limited: efficient recycling of materials is mandatory.

"Nothing great was ever achieved without enthusiasm." Ralph Waldo Emerson, American Philosopher

Contact:

MEET Battery Research Center University of Münster & Helmholtz-Institute Münster FZ Jülich GmbH Corrensstr. 46 48149 Münster, Germany

Prof. Dr. Martin Winter

Email: martin.winter@wwu.de m.winter@fz-juelich.de

Dr. Tobias Placke Email: tobias.placke@wwu.de

November 6, 2018

Acknowledgements

German Federal Ministry of Education and Research (BMBF) German Federal Ministry for Economic Affairs and Energy (BMWi) German Research Foundation (DFG) University of Münster (WWU)

